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The Kalman filter is a modelling and computation technique 
which is adequate to estimate parameters that change with 
time in a predictable manner, typically in navigation. 

It may be regarded as an extension of the classical least 
squares, with: 

•  the possibility to combine various types of observations, 
•  a sequential structure, 
•  numerical advantages, 
•  aptitude for real time. 





•  observation modelling 
–  functional model 
–  stochastic model 

•  movement modelling 
–  functional model 
–  stochastic model 

•  a few example 
•  interpretation of the results 
•  limitations 
•  alternatives 
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We condense the knowledge gained via the previous 
observations in a set of parameters with their covariance 
matrix. Then we add a new set of observations. 
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x̂ = x + Px +ATPA( )−1 ⋅ATP v

 
Qx̂x̂ = Px +ATPA( )−1



•  L’identité suivante est classique en algèbre linéaire. ���

•  Pour les termes de la forme de Bayes, on obtient: 

•  On pose: 

•  et l'on obtient: 

•  ainsi que: 

B +CTDC( )−1 =B−1 −B−1CT CB−1CT +D−1( )−1CB−1

 
Qx̂x̂ = Px +ATPA( )−1 = Px−1 −Px−1AT APx−1AT +P−1( )−1APx−1

  
K = Q xxAT AQ xxAT +Q( )−1

 
x̂ = x +K ⋅ v
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The parameters change between epochs. Using the adjusted 
values at epoch t0, we predict their values at epoch t. 

The uncertainty in the parameters at  is propagated and noise is 
added. 
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modèle des observations 

modèle du mouvement 
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A chaque tour de roue, on mesure le temps et la pression. 

paramètres:  D = distance parcourue 
  v = vitesse 
  H = altitude 
  m = pente 
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•  Like all least squares algorithms, the Kalman filter is sensitive 
to large residuals, that is, it does not work well with many 
outliers. 

•  If the movement model is loose, the filter reacts more quickly 
to a change in the trajectory, but the latter will look unstable. 

•  If the movement model is stiff, the trajectory will look smooth, 
but the filter reacts slowly to a change. 

•  The models can be adapted according to the noise level in the 
results, but after a smooth period, it will take time to detect a 
sudden change. 

•  We look forward to the presentation of the particle filters! 



•  KF is a very flexible approach for sequential estimation, 
thanks to the clear separation into observation and movement 
models. 

•  It works fine with good measurements and a well behaved 
movement. 

•  For measurements with many outliers, or for unpredictable 
movements, alternatives are advisable. 


