
An Introduction to Particle Filters

Hansruedi Künsch
Seminar für Statistik, D-Math

ETH Zürich

GMFH-Versammlung, Biel, 15. September 2012

Contents

The Kalman Filter

The general state space model

Recursion for general filter densities

Monte Carlo methods

Particle filters

A few references

I A precursor: Handschin, J. E., and Mayne, D. Q. Intern. J.
Control 9, 1969, 547-559.

I The first modern paper about particle filters: Gordon, N. J.,
Salmond, D. J., and Smith, A. F. M., IEE Proceedings-F
140, 1993, 107-113.

I A collection of short papers by many authors: Doucet, A.,
de Freitas, N., and Gordon, N. (eds), Sequential Monte
Carlo Methods in Practice, Springer, 2001.

I An introductory review chapter: Künsch, H. R., in Complex
Stochastic Systems, Barndorff-Nielsen, O.E., Cox, D. R.,
and Klüppelberg, C. (eds.), Chapman and Hall 2001.

I A modern tutorial: Doucet, A. and Johansen, A. M., in
Handbook on Nonlinear Filtering, Crisan, D., and
Rozovskii, B. (eds.), Oxford University Press, 2011.

Linear Gaussian state space models

State evolution (in discrete time):

Xt = FtXt−1 + Vt

Observation equations:

Yt = HtXt + Wt .

where Vt ∼ N (0,Qt),Wt ∼ N (0,Rt) uncorrelated white noises,
Ft ,Ht matrices of appropriate dimensions.

The Kalman filter computes recursively estimates x̂t |t−1 and x̂t |t
of the state at time t based on observations up to time t − 1 and
t respectively, together with the error covariance matrices Σt |t−1
and Σt |t .

Kalman filter recursions

Each recursion consists of a prediction step

x̂t |t−1 = Ft x̂t−1|t−1, Σt |t−1 = Σt−1|t−1 + Qt ,

followed by an update step

x̂t |t = x̂t |t−1 + Kt (yt − Ht x̂t |t−1), Σt |t = Σt |t−1 − KtHt Σt |t−1

where Kt is the Kalman gain.

The estimates have the following two properties
I The estimates are unbiased (no systematic error).
I The error covariance matrix is minimal.

Nonlinear/Non-Gaussian state space models

Xt = Ft (Xt−1,Vt), Yt = Ht (Xt ,Wt)

where (Vt) and (Wt) are two independent, white, but not
necessarily Gaussian noises, and Ft and Ht are known
functions.

As an example, the figure below shows a simulation of the
model

Xt = αXt−1 + β
Xt−1

1 + X 2
t−1

+ γ cos(1.2t) + Vt , Yt =
X 2

t
20

+ Wt

which goes back to Andrade Netto et al., IEEE Trans. Autom.
Control (1978).

Simulation from a nonlinear state space model

0
20

40
60

80
100

-20 -10 0 10 20

Tim
e t

Other examples

Stochastic volatility in finance:
Observations = log returns of an asset, state = unobservable
variances of log returns:

Xt = ν + αXt−1 + Vt , Yt = exp(Xt/2) Wt .

If we use log |Yt |, we obtain a linear state space model with a
strongly non-Gaussian noise, but this is not really a
simplification as will be discussed below.

Others: Tracking problems (“bearings only”), Computer vision,
Stochastic kinetic models in biology, Meteorology, etc.

Structure of general state space models

State evolution Xt = Ft (Xt−1,Vt) defines a Markov process in
discrete time (past values Xs for s < t − 1 are irrelevant).

If Yt = Ht (Xt ,Wt) with Wt white noise, then observations
depend only on the state at same time and are conditionally
independent given the states.

Shortcomings of the (extended) Kalman filter
As in the linear Gaussian case, the aim is to compute estimates
of the state at time t based on observations up to time t − 1 or
t , together with some uncertainty quantification.

Linear non-Gaussian case: Kalman filter estimates can be used
and they are BLUE (best linear unbiased), but nonlinear
estimates can be much better.

Nonlinear case: Need to linearize state and observation
equations (extended Kalman filter). Simple, but no control on
approximation error.

In general, full information about Xt based on observations is
obtained from conditional distributions. In particular, best
estimate = conditional expectation. In the linear, Gaussian
case, conditional distributions are again Gaussian, therefore
only conditional mean and covariance needed. Extended
Kalman filter says nothing about shape of conditional
distribution.

Two observation noises with the same variance

0 50 100 150 200 250 300 350 400 450 500

−1
8

−1
4

−1
0

−6
−2

2
4

6
8

time

x

0 50 100 150 200 250 300 350 400 450 500

−1
6

−1
2

−8
−4

0
2

4
6

8

time

x

Transition densities for states and observations

Transition densities for the state

at (xt−1, xt) =
P(Xt ∈ xt + dxt | Xt−1 = xt−1)

dxt

can be deduced from Ft and the densities of Vt , but formula is
in general complicated. In case of additive noise,
Xt = Ft (Xt−1) + Vt , we have

at (xt−1, xt) = fVt (xt − Ft (xt−1)).

Similarly, observation densities

bt (xt , yt) =
P(Yt ∈ yt + dyt | Xt = xt)

dyt

can in principle be computed from Ht and the density of Wt .

Filter recursions

Denote the conditional density of Xt given the observations
from time 1 to time s by ft |s(xt |ys

1). As in the Kalman filter, we
can compute ft |t−1 from ft−1|t−1 by a prediction step

ft |t−1(xt |y t−1
1) =

∫
ft−1|t−1(xt−1|y t−1

1)at (xt−1, xt)dxt−1

and ft |t from ft |t−1 by an update step

ft |t (xt |y t
1) =

bt (xt , yt)ft |t−1(xt |y t−1
1)∫

bt (x ′t , yt)ft |t−1(x ′t |y
t−1
1)dx ′t

.

The prediction step follows from the law of total probability, and
the update step from Bayes formula.

Combined prediction and update step

The denominator in the update step is simply a normalization
which turns the numerator into a probability density. Using the
symbol ∝ for “is proportional” we can write the two steps in the
short form

ft |t (xt |y t
1) ∝ bt (xt , yt)

∫
ft−1|t−1(xt−1|y t−1

1)at (xt−1, xt)dxt−1.

Looks simple, but is difficult to use in practice, except in the
linear Gaussian case or when the states are discrete.

Numerical integration is feasible for one- or two-dimensional
states, but not in general. In the last 20 years, Monte Carlo
methods have been developed for this purpose.

Filter distributions for a nonlinear system
Non-linear model of slide 7. The lines are the true state and the
10%-, 50%- and 90%-quantile of the filter distribution
approximated by Monte Carlo.

30
32

34
36

38
40

42
44

46
48

50
52

54
56

58
60

-20 -15 -10 -5 0 5 10 15 20

Basics of Monte Carlo

X is a d-dimensional random vector with joint density f ,
h : Rd → R. Monte Carlo methods use the law of large
numbers to estimate

E(h(X)) =

∫
Rd

h(x)f (x)dx ≈ 1
N

N∑
i=1

h(xi)

where xi are independent realizations of X .

+: Often easy to use, accuracy does not depend on d .
−: Error decreases as 1/

√
N (rather slow).

Implementation on a computer: Based on a stream of uniform
pseudo-random numbers (“The generation of random numbers
is too important to be left to chance”).

Generating random vectors with given f

There are many methods to generate random vectors with a
given density f (the “target”) from uniform random numbers.
Some do it directly, but more flexibility is gained by first using a
wrong density g (the “proposal”) to generate values and by
correcting later.

The accept/reject method corrects by a “yes or no” decision:
A proposed value x is accepted with probability

f (x)/g(x)

maxx f (x)/g(x)
.

Values that are not accepted are thrown away.

Illustration of the accept/reject method

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

Normal− und 2−seitige Exponential−Verteilung

x

D
ic

ht
e

0
10

20
30

40
50

60
70

80
90

Importance sampling method

It keeps all proposed N values x1, . . . xN , but assigns different
weights:

E(h(X)) ≈
N∑

i=1

wih(Xi), wi =
f (xi)/g(xi)∑
j f (xj)/g(xj)

.

If we want N values with equal weights, we can “resample”,
that is draw another sample from the proposed values
(x1, . . . xN) with probabilities (w1, . . .wN). Some xk ’s are then
chosen repeatedly, others never.

Both methods require that the proposal g is in some sense
close to the target f in order to work well.

The idea of the particle filter

The idea of the particle filter is to construct a sequences of
values (xt ,1, xt ,2, . . . xt ,N) with weights (wt ,1,wt ,2, . . .wt ,N) in
such a way that

E(h(Xt)|y t
1) =

∫
h(xt)ft |t (xt |y t

1)dxt ≈
N∑

i=1

h(xt ,i)wt ,i .

The values xt ,k are called “particles”.

For a computationally efficient algorithm, want to modify xt ,i and
wt ,i slightly when t increases by one.

Sequential importance sampling
We can approximate the integral in the filter recursion with the
particles at time t − 1:

ft |t−1(xt |y t−1
1) ≈ f N

t |t−1(xt |y t−1
1) =

N∑
k=1

wt−1,kat (xt−1,k , xt).

Hence if xt ,k ∼ at (xt−1,k , xt), the weighted sample (xt ,k ,wt−1,k)
approximates ft |t−1. Furthermore

ft |t (xt |y t
1) ≈ f N

t |t (xt |y t
1) ∝ bt (xt , yt)f N

t |t−1(xt |y t−1
1).

Hence if wt ,k ∝ wt−1,kbt (xt ,k , yt), the weighted sample
(xt ,k ,wt ,k) approximates ft |t .

Summary: we alternate between propagation and reweighting
steps. This is a sequential implementation of importance
sampling with proposal = marginal distribution of states (without
observations).

Unbalanced weights and resampling

Sequential importance sampling has the following problems:
Most particles are in regions where the filter density is small
and have small weights. Propagation of these particles is a
waste of effort.

Introduce resampling to make the weights equal. Particles with
high weights are chosen many times, those with low weights
disappear. Propagate particles at the same position
independtly of each other to create diversity.

Summary: In the particle filter, we alternate between the three
steps propagation, reweighting and resampling

Illustration of particle filtering

(a)
-12 -8 -6 -4 -2 0 2 4 6 8 10 12

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

• •• •• • • ••• •• •• ••• •• • ••• • •• ••• ••• •• •• •• • •• •• • ••• •• • ••• •• •••• • ••• • •• •••• • • ••• ••• ••••• • ••• •• • ••• ••• •• • •

(b)
-15 -10 -5 0 5 10 15

0.
0

0.
02

0.
04

0.
06

• •• ••• •••• •••• • •• •• • •••• •• •• • •• ••• • • ••• • ••• •••• •• • •• •• • ••••• • •• •• • • ••••• ••• • •• ••• •• • •••• • • • •• ••• ••• •

(c)
-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)
-15 -10 -5 0 5 10 15

0.
0

0.
04

0.
08

0.
12

0

1

2

3

4

5

(e)
-15 -10 -5 0 5 10 15

0.
0

0.
02

0.
04

0.
06

0.
08

(f)
-15 -10 -5 0 5 10 15

0.
0

0.
04

0.
08

0.
12

••• ••• •• •• • • ••• •• •• ••• • •• • ••• • •• ••••••• •• • ••• •• ••• •• •• •••• •• •• ••• ••• •• ••• • • •• •• • ••• ••• •• • • •••• ••• •••

(a): ft−1|t−1 and (xt−1,k), (b): ft |t−1 and (xt−1,k),
(c): bt (xt , yt), (d): ft |t and an importance sample of (b),
(e): f N

t |t−1, (f): f N
t |t and an exact sample from it.

Tricks for improvement

Resampling introduces additional Monte Carlo error. Can
minimize this by using so-called balanced sampling: Choose
particle k Nk times where |Nk − Nwk | < 1 and E(Nk) = Nwk .

In order to make weights in the reweighting step more similar,
one can propagate not according to at (xt−1,k , xt) but according
to a different proposal depending on the new observation yt ,
gt (xt−1,k , xt). This is corrected with importance weights

wt−1,K at (xt−1,k , xt ,k)

gt (xt−1,k , xt ,k)bt (xt ,k , yt)
.

Convergence and sensitivity to initial conditions

At time t , we sample from the approximate filter density f N
t |t .

There is a random sampling error at time t plus a systematic
error which is the consequence of errors at previous time steps.
A natural question is: Do these errors remain bounded or do
they increase over time ?
This question is equivalent to the following: Do differences in
initializing the filter recursion wash out, or do they continue for
ever ?
It turns out that this is a really hard question: A positive answer
needs strong conditions on at (but virtually no condition for bt).
On the other hand, there are no examples where the negative
answer is known to be true.

Extensions and challenges

I Smoothing instead of filtering: Computing conditional
distributions of Xt (or of (X0,X1, . . . ,XT) given (yT

1).
I Filtering if the state transition and/or observation densities

have unknown parameters.
I Filtering in high dimensions with a small number of

particles (Ensemble Kalman filter = particle filter with a
different update method).

This figure shows the smoothing distribution for the non-linear
model of slide 7.

30
32

34
36

38
40

42
44

46
48

50
52

54
56

58
60

-20 -10 -5 0 5 10 15 20

	The Kalman Filter
	The general state space model
	Recursion for general filter densities
	Monte Carlo methods
	Particle filters

