Some financial applications of Kalman filtering

Laurent Besson

15 septembre 2012

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

Э

DQC2

- Introduction
- Equity
 - Objectives
 - The Factors
- 3 The Model
 - State space
 - Usage
 - Mostly ignored
 - Applications
- 4 Macroeconomic
 - Business Condition Indicator

- Data
- State
- Factors
- Estimation
- Results
- 5 Interest rate curve
 - Objectives
 - Yield Curve
 - Curve Model
 - Global model

6 Conclusion

< ロ > < 同 > < 回 > < 回 >

What's most commonly used in finance?

• Linear regression (multifactor)

イロト イポト イヨト イヨト

Э

SQC

What's most commonly used in finance?

- Linear regression (multifactor)
- AutoRegressive Moving Averages : ARMA(p,q) (forecasting)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nac

What's most commonly used in finance?

- Linear regression (multifactor)
- AutoRegressive Moving Averages : ARMA(p,q) (forecasting)
- Generalized AutoRegressive Conditional Heteroskedasticity GARCH(p,q) (volatility)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQ P

What's most commonly used in finance?

- Linear regression (multifactor)
- AutoRegressive Moving Averages : ARMA(p,q) (forecasting)
- Generalized AutoRegressive Conditional Heteroskedasticity GARCH(p,q) (volatility)
- Regime switching models (calm, crisis)

<ロト <同ト < 国ト < 国ト

DQ P

What's most commonly used in finance?

- Linear regression (multifactor)
- AutoRegressive Moving Averages : ARMA(p,q) (forecasting)
- Generalized AutoRegressive Conditional Heteroskedasticity GARCH(p,q) (volatility)
- Regime switching models (calm, crisis)
- . . .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQ P

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Issues :

• Errors not iid Normal

SQC

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Issues :

- Errors not iid Normal
- Not linear

SQC

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Issues :

- Errors not iid Normal
- Not linear
- Not dynamic

▲□▶ ▲圖▶ ▲필▶ ▲필▶

3

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Issues :

- Errors not iid Normal
- Not linear
- Not dynamic
- Not stationnary

イロト イポト イヨト イヨト

DQC2

Э

As example, given some x_t , we want to describe / forecast y_t .

$$y_t = x_t \beta + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Issues :

- Errors not iid Normal
- Not linear
- Not dynamic
- Not stationnary
- . . .

イロト イポト イヨト イヨト

Э

DQC2

How to make it better?

ARMAX?

$$y_t = \phi_1 y_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1} + x_t \beta$$

Laurent Besson Some financial applications of Kalman filtering

How to make it better?

ARMAX?

$$y_t = \phi_1 y_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1} + x_t \beta$$

Dynamic?

$$\begin{aligned} y_t &= x_t \beta_t + \epsilon_t, \, \epsilon_t \sim \mathcal{N}(0, \sigma_{\epsilon}^2) \\ \beta_t &= T \beta_{t-1} + \eta_t, \, \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2) \end{aligned}$$

3

Laurent Besson

Some financial applications of Kalman filtering

Laurent Besson

Some financial applications of Kalman filtering

Introduction Equity The Model Objectives Macroeconomic The Factors Interest rate curve Conclusion

What use in the Equity world?

Laurent Besson Some financial applications of Kalman filtering

Objectives The Factors

Objectives

- Forecasting returns
- Dimension réduction
- Cost efficient replication
- Leverage synthetic replication

イロト イポト イヨト イヨト

DQC2

Э

Objectives The Factors

Factors

- Subset of the equity world
- Econometric data
- Derivates (Futures)

イロト イポト イヨト イヨト

Э

SQC

Model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

State space Usage Mostly ignored Evaluation Applications

State Space

Define α_t as the hidden state at time t

Laurent Besson Some financial applications of Kalman filtering

3

State space Usage Mostly ignored Evaluation Applications

State Space

Define α_t as the hidden state at time t

$$\begin{array}{ll} \mathsf{Measurement} & y_t = & Z_t \alpha_t + d_t + \epsilon_t \\ & (n \times 1) \end{array}$$

3

State space Usage Mostly ignored Evaluation Applications

State Space

Define α_t as the hidden state at time t

Where

$$\begin{pmatrix} \epsilon_t \\ \eta_t \end{pmatrix} \sim \mathcal{N} \left(0, diag(H_t, Q_t) \right) \\ \mathbb{E} \left[\alpha_0 \eta_t' \right] = 0 \\ \mathbb{E} \left[\alpha_0 \epsilon_t' \right] = 0$$

Э

State space Usage Mostly ignored Evaluation Applications

Used for

Prediction

Filtering

Smoothing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

SQC

State space Usage **Mostly ignored** Evaluation Applications

Standard ARMA(p,q)

 $y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$

イロト イポト イヨト イヨト

SQC

State space Usage Mostly ignored Evaluation Applications

Standard ARMA(p,q)

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$$

$$\Phi(L)y_t = \theta(L)\epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0,\sigma^2)$$

where :

$$\Phi(L) = (1 - \phi_1 L - \dots - \phi_p L^p)$$

$$\Theta(L) = (1 + \theta_1 L + \dots + \theta_q L^q)$$

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored Evaluation Applications

ARMA(p,q) in State Space Form

Setting
$$m = \max(p, q+1)$$
, the ARMA $(m, m-1)$:

$$(\phi_1, \phi_2, \dots, \phi_m) = (\phi_1, \dots, \phi_p, 0, \dots, 0)$$

$$(\theta_1, \theta_2, \dots, \theta_{m-1}) = (\theta_1, \dots, \theta_q, 0, \dots, 0)$$

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored Evaluation Applications

ARMA(p,q) in State Space Form

$$y_{t} = (1, 0, \dots, 0)\alpha_{t}$$

$$\alpha_{t} = \begin{bmatrix} \phi_{1} & & \\ \phi_{2} & & \\ \vdots & & \\ \hline \phi_{m} & & 0' \end{bmatrix} \alpha_{t-1} + \begin{bmatrix} 1 & \\ \theta_{1} \\ \vdots \\ \theta_{m-1} \end{bmatrix} \epsilon_{t}$$

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Evaluation

Laurent Besson Some financial applications of Kalman filtering

State space Usage Mostly ignored **Evaluation** Applications

Initialization

 $a_0 = \mathbb{E}(\alpha_0)$

Laurent Besson Some financial applications of Kalman filtering

State space Usage Mostly ignored **Evaluation** Applications

Initialization

$$a_0 = \mathbb{E}(\alpha_0)$$

$$P_0 = \mathbb{E}[(\alpha_0 - a_0)(\alpha_0 - a_0)']$$

Laurent Besson Some financial applications of Kalman filtering
State space Usage Mostly ignored **Evaluation** Applications

Prediction

Dropping c_t and d_t :

$$a_{t|t-1} = T_t a_{t-1}$$

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Prediction

Dropping c_t and d_t :

$$a_{t|t-1} = T_t a_{t-1}$$

 $P_{t|t-1} = T_t P_{t-1} T'_t + R_t Q_t R'_t$

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Prediction

Dropping c_t and d_t :

$$\begin{array}{lcl} a_{t|t-1} & = & T_t a_{t-1} \\ P_{t|t-1} & = & T_t P_{t-1} T_t' + R_t Q_t R_t' \\ \hat{y}_t & = & Z_t a_{t|t-1} \end{array}$$

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Prediction

Dropping c_t and d_t :

$$\begin{array}{rcl} a_{t|t-1} &=& T_t a_{t-1} \\ P_{t|t-1} &=& T_t P_{t-1} T_t' + R_t Q_t R_t' \\ \hat{y}_t &=& Z_t a_{t|t-1} \end{array}$$

Define :

errors
$$v_t = y_t - \hat{y}_t$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶

3

State space Usage Mostly ignored **Evaluation** Applications

Prediction

Dropping c_t and d_t :

$$\begin{array}{rcl} a_{t|t-1} & = & T_t a_{t-1} \\ P_{t|t-1} & = & T_t P_{t-1} T_t' + R_t Q_t R_t' \\ \hat{y}_t & = & Z_t a_{t|t-1} \end{array}$$

Define :

errors
$$v_t = y_t - \hat{y}_t$$

errors' variance $F_t = T_t P_{t|t-1} Z'_t + H_t$

▲□▶ ▲圖▶ ▲필▶ ▲필▶

3

State space Usage Mostly ignored **Evaluation** Applications

Correction

Updating State estimate a_{t-1} after measurement

$$a_t = a_{t|t-1} + K_t v_t$$

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

3

State space Usage Mostly ignored **Evaluation** Applications

Correction

Updating State estimate a_{t-1} after measurement

$$a_t = a_{t|t-1} + K_t v_t$$

$$P_t = P_{t|t-1} - K_t Z_t P_{t|t-1}$$

Laurent Besson Some financial applications of Kalman filtering

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

3

State space Usage Mostly ignored **Evaluation** Applications

Correction

Updating State estimate a_{t-1} after measurement

$$a_t = a_{t|t-1} + K_t v_t$$

$$P_t = P_{t|t-1} - K_t Z_t P_{t|t-1}$$

Minimize MSE on State yields the Kalman gain K_t is :

$$K_t = P_{t|t-1} Z' F_t^{-1}$$

Laurent Besson Some financial applications of Kalman filtering

<ロト < 同ト < ヨト < ヨト

SQC

State space Usage Mostly ignored **Evaluation** Applications

Estimation

• Inital values may need some work...

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Estimation

• Inital values may need some work...

•
$$v_t \sim \mathcal{N}(0, F_t) \Rightarrow \ln(\mathcal{L})$$

$$\ln(\mathcal{L}) = -\frac{1}{2} \sum_{t=1}^{\tau} \left[n \ln 2\pi + \ln |F_t| + v'_t F_t^{-1} v_t \right]$$

Laurent Besson Some financial applications of Kalman filtering

(ロ) (部) (E) (E) (E)

State space Usage Mostly ignored **Evaluation** Applications

Estimation

• Inital values may need some work...

•
$$v_t \sim \mathcal{N}(0, F_t) \Rightarrow \ln(\mathcal{L})$$

$$\ln(\mathcal{L}) = -\frac{1}{2} \sum_{t=1}^{\tau} \left[n \ln 2\pi + \ln |F_t| + v'_t F_t^{-1} v_t \right]$$

• Invert F_t ...

《日》 《圖》 《臣》 《臣》

3

SQC

State space Usage Mostly ignored **Evaluation** Applications

Estimation

• Inital values may need some work...

•
$$v_t \sim \mathcal{N}(0, F_t) \Rightarrow \ln(\mathcal{L})$$

$$\ln(\mathcal{L}) = -\frac{1}{2} \sum_{t=1}^{\tau} \left[n \ln 2\pi + \ln |F_t| + v'_t F_t^{-1} v_t \right]$$

- Invert F_t ...
- Minimize $ln(\mathcal{L})$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Э

SQC

State space Usage Mostly ignored Evaluation Applications

Application

Macroeconomic

Laurent Besson Some financial applications of Kalman filtering

3

State space Usage Mostly ignored Evaluation Applications

Application

- Macroeconomic
- Interest rate

3

State space Usage Mostly ignored Evaluation Applications

Application

- Macroeconomic
- Interest rate
- Portfolio management

◆ロト ◆部ト ◆注ト ◆注ト

Э

Business Condition Indicator Data State Factors Estimation Results

Business Condition Index

Aruba, Dieblod and Scotti have built this index

• Business Condition is not observable

イロト イポト イヨト イヨト

SQC

Business Condition Indicator Data State Factors Estimation Results

Business Condition Index

Aruba, Dieblod and Scotti have built this index

- Business Condition is not observable
- Mutiple factors and frequencies

イロト イポト イヨト イヨト

DQC2

Business Condition Indicator Data State Factors Estimation Results

Business Condition Index

Aruba, Dieblod and Scotti have built this index

- Business Condition is not observable
- Mutiple factors and frequencies
- High Frequency : daily

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQC2

Business Condition Indicator Data State Factors Estimation Results

Business Condition Index

Aruba, Dieblod and Scotti have built this index

- Business Condition is not observable
- Mutiple factors and frequencies
- High Frequency : daily
- Optimal estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1

Business Condition Indicator Data State Factors Estimation Results

Data

Business condition is dependent on :

• GDP (quarterly flow)

Laurent Besson Some financial applications of Kalman filtering

3

SQC

Business Condition Indicator Data State Factors Estimation Results

Data

Business condition is dependent on :

- GDP (quarterly flow)
- Employees payrolls (monthly stock)

イロト イポト イヨト イヨト

990

Э

Business Condition Indicator Data State Factors Estimation Results

Data

Business condition is dependent on :

- GDP (quarterly flow)
- Employees payrolls (monthly stock)
- Unemployment (weekly stock)

イロト イポト イヨト イヨト

DQC2

Э

Business Condition Indicator Data State Factors Estimation Results

Data

Business condition is dependent on :

- GDP (quarterly flow)
- Employees payrolls (monthly stock)
- Unemployment (weekly stock)
- Term structure of interest rates (daily)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nac

=

Business Condition Indicator Data State Factors Estimation Results

Data

Business condition is dependent on :

- GDP (quarterly flow)
- Employees payrolls (monthly stock)
- Unemployment (weekly stock)
- Term structure of interest rates (daily)
- . . .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQC2

Business Condition Indicator Data State Factors Estimation Results

State

Business condition is a daily AR(1) process

$$\alpha_t = T\alpha_{t-1} + \eta_t, \, \eta_t \sim \mathcal{N}(0, 1)$$

Laurent Besson Some financial applications of Kalman filtering

3

Business Condition Indicator Data State **Factors** Estimation Results

Observed factors

Removing trends, business dependent factors can be modeled

$$y_t^i = \phi_i y_{t-\tau_i}^i + z_i \alpha_t + \epsilon_t^i,$$

• τ_i is period of measurement of y^i in days • $\epsilon_t^i \sim \mathcal{N}(0, \sigma_i^2)$

イロト イポト イヨト イヨト

DQC2

Э

Introduction Business Condition Indicator Equity Data The Model State Macroeconomic Factors Interest rate curve Estimation Conclusion Results

Synchronizing

 y_t^i is not measured daily, therefore define \tilde{y}_t^i • in case of a *stock* :

$$\tilde{y}_t^i = \begin{cases} y_t^i & \text{if observed} \\ nan & \text{otherwise} \end{cases}$$

イロト イポト イヨト イヨト

Э

DQC2

Introduction Business Condition Indicator Equity Data The Model State Macroeconomic Factors Interest rate curve Estimation Conclusion Results

Synchronizing

 y_t^i is not measured daily, therefore define \tilde{y}_t^i • in case of a *stock* :

$$\tilde{y}_t^i = \begin{cases} y_t^i & \text{if observed} \\ nan & \text{otherwise} \end{cases}$$

• in case of a *flow* :

$$ilde{y}_t^i = \left\{ egin{array}{c} \sum_{j=0}^{ au_t-1} y_{t-j}^i & ext{if observed} \ nan & ext{otherwise} \end{array}
ight.$$

イロト イポト イヨト イヨト

DQC2

Э

 $= \begin{bmatrix} z_{1} & z_{2} & z_{3} & z_{4} \\ 0 & z_{2} & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & z_{2} & 0 & z_{4} \\ 0 & 0 & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & z_{4} \end{bmatrix} \begin{pmatrix} \alpha_{t} \\ \alpha_{t-1} \\ \vdots \\ \alpha_{t-q} \end{bmatrix}$ $\begin{array}{c} \tilde{y}_t^1\\ \tilde{y}_t^2\\ \tilde{y}_t^3\\ \tilde{y}_t^4\\ \tilde{y}_t^4 \end{array}$ = y_t Żt

 $\underbrace{\begin{bmatrix} \tilde{y}_{t}^{1} \\ \tilde{y}_{t}^{2} \\ \tilde{y}_{t}^{3} \\ \tilde{y}_{t}^{4} \end{bmatrix}}_{y_{t}} = \underbrace{\begin{bmatrix} z_{1} & z_{2} & z_{3} & z_{4} \\ 0 & z_{2} & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & z_{2} & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & z_{4} \end{bmatrix}}_{\alpha_{t}} \underbrace{\begin{bmatrix} \alpha_{t} \\ \alpha_{t-1} \\ \vdots \\ \alpha_{t-q} \end{bmatrix}}_{\alpha_{t}} + \underbrace{\begin{bmatrix} \theta_{1} & 0 & 0 & 0 \\ 0 & \theta_{2} & 0 & 0 \\ 0 & 0 & \theta_{3} & 0 \\ 0 & 0 & 0 & \theta_{4} \end{bmatrix}}_{d_{t}} \begin{bmatrix} \tilde{y}_{t-1}^{1} \\ \tilde{y}_{t-w}^{2} \\ \tilde{y}_{t-m}^{3} \\ \tilde{y}_{t-q}^{4} \end{bmatrix}}_{\epsilon_{t}} + \underbrace{\begin{bmatrix} \epsilon_{t}^{1} \\ \epsilon_{t}^{*2} \\ \epsilon_{t}^{*3} \\ \epsilon_{t}^{*4} \end{bmatrix}}_{\epsilon_{t}}$ Żt

$$\underbrace{\begin{bmatrix} \tilde{y}_{t}^{1} \\ \tilde{y}_{t}^{2} \\ \tilde{y}_{t}^{3} \\ \tilde{y}_{t}^{4} \end{bmatrix}}_{y_{t}} = \underbrace{\begin{bmatrix} z_{1} & z_{2} & z_{3} & z_{4} \\ 0 & z_{2} & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & z_{2} & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & z_{4} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & z_{4} \end{bmatrix}'}_{Z_{t}} \underbrace{\begin{bmatrix} \alpha_{t} \\ \alpha_{t-1} \\ \vdots \\ \alpha_{t-q} \end{bmatrix}}_{\alpha_{t}} + \underbrace{\begin{bmatrix} \theta_{1} & 0 & 0 & 0 \\ 0 & \theta_{2} & 0 & 0 \\ 0 & 0 & \theta_{3} & 0 \\ 0 & 0 & 0 & \theta_{4} \end{bmatrix}}_{d_{t}} \begin{bmatrix} \tilde{y}_{t-1}^{1} \\ \tilde{y}_{t-w}^{2} \\ \tilde{y}_{t-m}^{3} \\ \tilde{y}_{t-q}^{4} \end{bmatrix}}_{\epsilon_{t}} + \underbrace{\begin{bmatrix} \epsilon_{t}^{1} \\ \epsilon_{t}^{2} \\ \epsilon_{t}^{3} \\ \epsilon_{t}^{4} \end{bmatrix}}_{\epsilon_{t}}$$

Introduction	Business Condition Indicate
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

There will be 3 situations concerning missing values on day t:

• All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

3

DQC2

Introduction	Business Condition Indicator
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

There will be 3 situations concerning missing values on day t:

- All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$
- None : Prediction and Correction steps

DQC2

Э

Introduction	Business Condition Indicator
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

There will be 3 situations concerning missing values on day t:

- All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$
- None : Prediction and Correction steps
- Some : Prediction step and Correction of the subset of available data

1

Introduction	Business Condition Indicator
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

There will be 3 situations concerning missing values on day t:

- All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$
- None : Prediction and Correction steps
- Some : Prediction step and Correction of the subset of available data

1

Introduction	Business Condition Indicator
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

There will be 3 situations concerning missing values on day t:

- All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$
- None : Prediction and Correction steps
- Some : Prediction step and Correction of the subset of available data

Initialization is done in 2 steps :

• Use only *stock* factors to reduce the size and get *a*_t

(日) (司) (王) (王)
Introduction	Business Condition Indicator
Equity	Data
The Model	State
Macroeconomic	Factors
Interest rate curve	Estimation
Conclusion	Results

Estimation

There will be 3 situations concerning missing values on day t:

- All : Prediction : $a_{t|t-1}$ and $P_{t|t-1}$
- None : Prediction and Correction steps
- Some : Prediction step and Correction of the subset of available data

Initialization is done in 2 steps :

- Use only stock factors to reduce the size and get a_t
- Use first step results to regress and get the remaining start-up values

(日) (司) (王) (王)

SOR

An online daily calculated *Business Condition Indicator* with a few more refinements

Results

An online daily calculated *Business Condition Indicator* with a few more refinements

Available at Federal Reserve Bank of Philadelphia

Objectives Yield Curve Curve Model Global model

Interest rate curve

Laurent Besson Some financial applications of Kalman filtering

Objectives Yield Curve Curve Model Global model

Objectives

Dimension reduction

Get a global interest rate curve

Laurent Besson Some financial applications of Kalman filtering

◆ロト ◆部ト ◆注ト ◆注ト

Э

DQC2

Objectives **Yield Curve** Curve Model Global model

Yield Curve

We need the curve to price interest rate products. Define :

- Maturity au in days
- The interest rate at time t for the maturity τ as $y_t(\tau)$

If at time t you invest 1 CHF for au days, you get $(1+y_t(au))^{ au}$ CHF

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQ P

Objectives **Yield Curve** Curve Model Global model

Yield Curve

Objectives **Yield Curve** Curve Model Global model

Data

The tenors : 11 maturities

• $\tau \leq 1Y$: Libor 3M, 6M, 9M and 12M

• $\tau > 1Y$: Interest Rate Swap 2Y,3Y,4Y,5Y,7Y,10Y and 20Y The currencies : CHF, EUR, USD, GBP, JPY

イロト イポト イヨト イヨト

DQC2

Objectives **Yield Curve** Curve Model Global model

Size reduction

To reduce size, one looks at factors such as :

- Level : $y_t(10Y)$
- Slope : $y_t(10Y) y_t(3M)$
- Curvature : $2y_t(2Y) y_t(10Y) y_t(3M)$

イロト イポト イヨト イヨト

DQC2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Objectives Yield Curve **Curve Model** Global model

Curve Model

Nelson-Siegel proposed a good fitting model

Objectives Yield Curve **Curve Model** Global model

State Space Form

<ロト < 同ト < ヨト < ヨト

DQ P

Objectives Yield Curve **Curve Model** Global model

State Space Form

$$\begin{bmatrix} y_t(\tau_1) \\ y_t(\tau_2) \\ \vdots \\ y_t(\tau_n) \end{bmatrix} = \begin{bmatrix} 1 & \frac{1-e^{-\lambda\tau_1}}{\lambda\tau_1} & \frac{1-e^{-\lambda\tau_1}}{\lambda\tau_1} - e^{-\lambda\tau_1} \\ 1 & \frac{1-e^{-\lambda\tau_2}}{\lambda\tau_2} & \frac{1-e^{-\lambda\tau_2}}{\lambda\tau_2} - e^{-\lambda\tau_2} \\ \vdots & \vdots & \vdots \\ 1 & \frac{1-e^{-\lambda\tau_n}}{\lambda\tau_n} & \frac{1-e^{-\lambda\tau_n}}{\lambda\tau_n} - e^{-\lambda\tau_n} \end{bmatrix} \begin{bmatrix} I_t \\ s_t \\ c_t \end{bmatrix} + \begin{bmatrix} \epsilon_t(\tau_1) \\ \epsilon_t(\tau_2) \\ \vdots \\ \epsilon_t(\tau_n) \end{bmatrix}$$

Or with $\alpha_t = (I_t s_t c_t)'$

$$y_{t} = Z(\tau)\alpha_{t} + \epsilon_{t}$$

$$\alpha_{t} = T\alpha_{t-1} + \eta_{t}$$

$$\begin{bmatrix} \epsilon_{t} \\ \eta_{t} \end{bmatrix} \sim \mathcal{N}\left(0, \begin{bmatrix} H & 0 \\ 0 & Q \end{bmatrix}\right)$$

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

3

Objectives Yield Curve **Curve Model** Global model

990

_

Objectives Yield Curve **Curve Model** Global model

Objectives Yield Curve Curve Model Global model

Global Model

We start by removing the *Curvature* Factor C_t for simplicity

$$Y_t = L_t + \left(rac{1-e^{-\lambda au}}{\lambda au}
ight) S_t + \epsilon_t(au)$$

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

SQC

Objectives Yield Curve Curve Model Global model

Global Model

We start by removing the *Curvature* Factor C_t for simplicity

$$Y_{t} = L_{t} + \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau}\right)S_{t} + \epsilon_{t}(\tau)$$
$$\begin{bmatrix} L_{t} \\ S_{t} \end{bmatrix} = \begin{bmatrix} \Phi_{11} & \Phi_{22} \\ \Phi_{21} & \Phi_{22} \end{bmatrix}\begin{bmatrix} L_{t-1} \\ S_{t-1} \end{bmatrix} + \begin{bmatrix} U_{t}^{L} \\ U_{t}^{S} \end{bmatrix}$$
$$U_{t} \sim \mathcal{N}(0, I_{2})$$

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

SQC

Objectives Yield Curve Curve Model Global model

Country Model

Each country's curve (l_{it}, s_{it}) are linked to the global curve, i = 1, ..., N

$$I_{it} = \alpha_i^l + \beta_i^l L_t + \gamma_{it}^l$$

$$s_{it} = \alpha_i^s + \beta_i^s S_t + \gamma_{it}^s$$

イロト イポト イヨト イヨト

DQC2

Э

Objectives Yield Curve Curve Model Global model

Country Model

Each country's curve (l_{it}, s_{it}) are linked to the global curve, i = 1, ..., N

$$\begin{split} I_{it} &= \alpha_i^l + \beta_i^l \mathcal{L}_t + \gamma_{it}^l \\ s_{it} &= \alpha_i^s + \beta_i^s S_t + \gamma_{it}^s \\ \begin{bmatrix} \gamma_{it}^l \\ \gamma_{it}^s \end{bmatrix} &= \begin{bmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{bmatrix} \begin{bmatrix} \gamma_{it-1}^l \\ \gamma_{it-1}^s \end{bmatrix} + \begin{bmatrix} u_{it}^l \\ u_{it}^s \end{bmatrix} \\ \mathbb{E}u_{it}^n u_{i't'}^{n'} &= \delta_{ii'} \delta_{tt'} \delta_{nn'} (\sigma_i^n)^2, n = s, l \\ \mathbb{E}u_{it}^n U_{t-j}^{n'} &= 0, \forall i, t, n, j \end{split}$$

Laurent Besson Some financial applications of Kalman filtering

イロト イポト イヨト イヨト

DQC2

Э

Objectives Yield Curve Curve Model Global model

State Space

$$\begin{bmatrix} y_{1t}(\tau_1) \\ y_{1t}(\tau_2) \\ \vdots \\ y_{Nt}(\tau_n) \end{bmatrix} = A \begin{bmatrix} \alpha_1' \\ \alpha_1^s \\ \vdots \\ \alpha_N^s \end{bmatrix} + B \begin{bmatrix} L_t \\ S_t \end{bmatrix} + A \begin{bmatrix} \gamma_{1t}' \\ \gamma_{1t}^s \\ \vdots \\ \gamma_{Nt}^s \end{bmatrix} + \begin{bmatrix} \epsilon_{1t}(\tau_1) \\ \epsilon_{1t}(\tau_2) \\ \vdots \\ \epsilon_{Nt}(\tau_n) \end{bmatrix}$$

Laurent Besson Some financial applications of Kalman filtering

Objectives Yield Curve Curve Model Global model

State Space

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQ P

Objectives Yield Curve Curve Model Global model

Estimation

MCMC :

• Get $Z = (I_{it}, s_{it})$ by OLS and use them as observed to estimate the remaining parameters : $\theta = (\alpha_i^n, \beta_i^n, \psi, \sigma_i^n, \phi), n = I, s$

イロト イポト イヨト イヨト

DQC2

Objectives Yield Curve Curve Model Global model

Estimation

MCMC :

- Get $Z = (I_{it}, s_{it})$ by OLS and use them as observed to estimate the remaining parameters : $\theta = (\alpha_i^n, \beta_i^n, \psi, \sigma_i^n, \phi), n = I, s$
- Get $F = (L_t, S_t)$ by drawing interatively from $\theta^{(i)} \sim p(\theta|F^{(i-1)}, Z)$ and from $F^{(i)} \sim p(F|\theta^{(i)}, Z)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DQ P

Objectives Yield Curve Curve Model Global model

Estimation

MCMC :

- Get $Z = (I_{it}, s_{it})$ by OLS and use them as observed to estimate the remaining parameters : $\theta = (\alpha_i^n, \beta_i^n, \psi, \sigma_i^n, \phi), n = I, s$
- Get $F = (L_t, S_t)$ by drawing interatively from $\theta^{(i)} \sim p(\theta|F^{(i-1)}, Z)$ and from $F^{(i)} \sim p(F|\theta^{(i)}, Z)$

• . . .

< ロ > < 同 > < 回 > < 回 > < 回 > <

=

DQ P

Appealing Model...

Appealing Model...

... but can become delicate to estimate

Laurent Besson Some financial applications of Kalman filtering

・ロト ・四ト ・モト ・モト

3

Appealing Model...

... but can become delicate to estimate

If little is know from the underlying dynamic

Laurent Besson Some financial applications of Kalman filtering

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

SQC