
Algebraic methods for cryptanalysis

Jean-Philippe Aumasson

1. Cube attacks and cube testers

[Dinur-Shamir-09]
[Aumasson-Dinur-Meier-Shamir-09]

Block cipher

E : {0, 1}k × {0, 1}n 7→ {0, 1}n

◮ k : secret key size
◮ n: block size
◮ e.g., k = n = 128
◮ family of permutations {EK}K∈{0,1}k

◮ encryption: M 7→ C = EK (M)

◮ decryption: C 7→ M = E−1
K (C)

◮ ex: DES, AES, IDEA,

Stream cipher

E : {0, 1}k × {0, 1}v 7→ {0, 1}ℓ

◮ k : secret key size
◮ v : initial value (IV) size
◮ ℓ: keystream size
◮ e.g., k = 128, n = 96, ℓ < 264

◮ pseudo-random generator with seed (V , K)

◮ encryption/decryption: X 7→ X ⊕ EK (V)

◮ ex: RC4, A5/1, Grain-128

Standard adversarial model for stream ciphers

◮ key K fixed and unknown
◮ adversary makes chosen-IV queries EK (V)

◮ adversary tries to recover (information on) K
◮ adversary tries to distinguish EK from a random

generator

Stream ciphers often described as algorithms

Ex: RC4 [Rivest-94]

1. for i = 0, . . . , 255

2. T [i]← i

3. j ← 0

4. for i = 0, . . . , 255

5. j ← (j + T [i] + K [i]) mod 256

6. T [i]↔ T [j]

Any stream cipher E : (K , V) 7→ S ∈ {0, 1}ℓ is associated
with ℓ polynomial equations on GF(2), e.g.

S0 = K0K10K37V2V7 + K2K3V0V9 + K2 + K5 + V8

S1 = K3K4V0V1V2 + K4V3V0V9 + V7 + V8

· · · = · · ·

Sℓ−1 = K0K1K2K3 + V0V1V2V3V4 + 1

Any stream cipher E : (K , V) 7→ S ∈ {0, 1}ℓ is associated
with ℓ polynomial equations on GF(2), e.g.

S0 = K0K10K37V2V7 + K2K3V0V9 + K2 + K5 + V8

S1 = K3K4V0V1V2 + K4V3V0V9 + V7 + V8

· · · = · · ·

Sℓ−1 = K0K1K2K3 + V0V1V2V3V4 + 1

For security, equations should be

◮ dense
◮ of high degree

Ideally, each coefficient null with prob. 1/2

Classical algebraic attacks on E : (K , V) 7→ S

◮ find low-degree equations fi(K , V , S) = 0
◮ solve system, to recover K when V and S known

(NP-hard)

Classical algebraic attacks on E : (K , V) 7→ S

◮ find low-degree equations fi(K , V , S) = 0
◮ solve system, to recover K when V and S known

(NP-hard)

State-of the art methods:

◮ find Gröbner bases of a polynomial ideal
◮ algorithms F4, F5, XL, XSL

Ex: 40 random quadratic equations in 20 variables over
GF(28) solvable in 245 cycles [Yang et al.-07]

How to exploit the algebraic structure without solving a
nonlinear system?

Cube attacks

How to exploit the algebraic structure without solving a
nonlinear system?

Cube attacks

General idea:

◮ compute high-order derivative to obtain linear
equations

◮ solve a linear system in O(n3)

Differentiation n times of a degree-n polynomial yields the
coefficient of the highest-degree monomial

f (X1, X2, X3, X4) = X1 + X1X2X3 + X1X2X4

= X1 + X1X2X3 + X1X2X4 + 0× X1X2X3X4

Sum over all values of (X1, X2, X3, X4):

f (0, 0, 0, 0)+f (0, 0, 0, 1)+f (0, 0, 1, 0)+· · ·+f (1, 1, 1, 1) = 0

Differentiation m < n times of degree-n polynomial yields
a polynomial of degree ≤ (n −m)

f (X1, X2, X3, X4) = X1 + X1X2X3 + X1X2X4

= X1 + X1X2(X3 + X4)

Fix X3 and X4, sum over all values of (X1, X2):
∑

(X1,X2)∈{0,1}2

f (X1, X2, X3, X4) = 4× X1 + (X3 + X4)

= X3 + X4

X1 and X2 public and variable (initial value)

X3 and X4 fixed and unknown (secret key)

Black-box queries to f (·, ·, X3, X4) with chosen (X1, X2)

X1 and X2 public and variable (initial value)

X3 and X4 fixed and unknown (secret key)

Black-box queries to f (·, ·, X3, X4) with chosen (X1, X2)

Evaluate of (X3 + X4) via order-2 derivative:
∑

(X1,X2)∈{0,1}2

f (X1, X2, X3, X4) = X3 + X4

Just need to know that the factor of X1X2 is (X3 + X4)

On a stream cipher f : (K , V) 7→ S:

Phase 1 : find monomials with linear derivative

f (K , V) = · · ·+ V1V3V5V7(K2 + K3 + K5) + · · ·

f (K , V) = · · ·+ V1V2V6V8V12(K1 + K2) + · · ·

· · · = · · ·

f (K , V) = · · ·+ V3V4V5V6(K3 + K4 + K5) + · · ·

(reconstruct polynomials with linearity tests)

Phase 2 : evaluate the polynomials in K , solve the system

Complexity: exponential in the order of derivatives,
polynomial in the key size

Variant: cube testers

◮ make high-order differentiation
◮ compute statistics on values obtained

Use as distinguisher, not for key-recovery

Summary (cube attacks)

◮ recover keys of ciphers of low degree over GF(2)

◮ high-order derivative to obtain a linear system of
equations

Open problems

◮ how to find good variables to differentiate?
◮ how to adapt to extensions of GF(2)?

2. Application to the cipher Grain-128

[Aumasson-Dinur-Henzen-Meier-Shamir-09]

Grain-128

◮ state-of-the-art design (2006)
◮ by Hell, Johansson (Uni Lund), Meier (FHNW)
◮ developed within UE NoE project (eSTREAM)
◮ known attacks on reduced versions only
◮ implemented in the Bouncycastle library

Grain-128

128-bit key, 96-bit IV

degree-(2 + 3) update function (deg NFSR= 2, deg h = 3)

NFSR LFSR

h

g f

i

?

?
- �

- �

- -

?i� � �

7 2 7 1

19 1 6 1

Evolutionary algorithm for finding variables that give
imbalanced polynomial after derivation

In a nutshell: population = points in the search space

1. initialize population pseudorandomly

2. reproduction (crossover + mutation)

3. selection of best fitting individuals

4. go to 2.

#generations (steps 2-4) before halting = parameter

Efficient implementation of derivation over several
instances:

◮ on hardware field-programmable gate array (FPGA)
◮ parallelization 256× 32

Grain_1 Grain_2 Grain_3 Grain_2m

s_inst

Output collection
u_inst

96 96 96 96

32 32 32 32

Out2m−1Out0 Out1 Out2

IV2m−1IV0

eq=
\LARGE
\[
 \textnormal{IV}_0
\]

IV1

eq=
\LARGE
\[
 \textnormal{IV}_1
\]

IV2

eq=
\LARGE
\[
 \textnormal{IV}_2
\]

e_inst

Key and IV generation
LFSR incrementer

partial IV
n-m128

CV
router

CV
router

CV
router

CV
router

m m m m

offset2m−1offset0 offset1 offset2

S
im

ul
at

io
n

co
nt

ro
lle

r

A
R

R
A

Y

Key

High-complexity attack

◮ 240 for order-40 derivation
◮ 64 times
◮ 256 clockings per trial

254 basic operations in total

High-complexity attack

◮ 240 for order-40 derivation
◮ 64 times
◮ 256 clockings per trial

254 basic operations in total

Results

Imbalance observed on reduced version with up to 237
initialization clockings (out of 256)

⇒ derivative is an imbalanced Boolean function

Extrapolation (Matlab)

By standard general linear regression

In
iti

al
iz

at
io

n
ro

un
ds

Cube size
0 20 40 60 80 100

160

180

200

220

240

260

280

In
iti

al
iz

at
io

n
ro

un
ds

Cube size
70 72 74 76 78 80

250

251

252

253

254

255

256

257

258

259

260

⇒ order-77 differentiation gives imbalanced function

Summary (attack on Grain-128)

◮ combines discrete optimization (EA) and cube testers
◮ first “cracking machine” for a stream cipher
◮ Grain-128 arguably broken (no 128-bit security)

Open problems

◮ which other ciphers are vulnerable?
◮ optimization: insights on the search space topology?

Algebraic methods for cryptanalysis

Jean-Philippe Aumasson

